Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Cancer Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659235

RESUMO

N6-methyladenosine (m6A) is an RNA modification involved in RNA processing and widely found in transcripts. In cancer cells, m6A is upregulated, contributing to their malignant transformation. In this study, we analyzed gene expression and m6A modification in cancer tissues, ducts, and acinar cells derived from pancreatic cancer patients using MeRIP-seq. We found that dozens of RNAs highly modified by m6A were detected in cancer tissues compared with ducts and acinar cells. Among them, the m6A-activated mRNA TCEAL8 was observed, for the first time, as a potential marker gene in pancreatic cancer. Spatially resolved transcriptomic analysis showed that TCEAL8 was highly expressed in specific cells, and activation of cancer-related signaling pathways was observed relative to TCEAL8-negative cells. Furthermore, among TCEAL8-positive cells, the cells expressing the m6A-modifying enzyme gene METTL3 showed co-activation of Notch and mTOR signaling, also known to be involved in cancer metastasis. Overall, these results suggest that m6A-activated TCEAL8 is a novel marker gene involved in the malignant transformation of pancreatic cancer.

2.
Proc Natl Acad Sci U S A ; 121(12): e2312322121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478683

RESUMO

RN7SL1 (RNA component of signal recognition particle 7SL1), a component of the signal recognition particle, is a non-coding RNA possessing a small ORF (smORF). However, whether it is translated into peptides is unknown. Here, we generated the RN7SL1-Green Fluorescent Protein (GFP) gene, in which the smORF of RN7SL1 was replaced by GFP, introduced it into 293T cells, and observed cells emitting GFP fluorescence. Furthermore, RNA-seq of GFP-positive cells revealed that they were in an oncogenic state, suggesting that RN7SL1 smORF may be translated under special conditions.


Assuntos
Peptídeos , Partícula de Reconhecimento de Sinal , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos/metabolismo
3.
Clin Transl Med ; 14(2): e1565, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38328889

RESUMO

BACKGROUND: Heart failure due to myocardial infarction (MI) involves fibrosis driven by epicardium-derived cells (EPDCs) and cardiac fibroblasts, but strategies to inhibit and provide cardio-protection remains poor. The imprinted gene, non-canonical NOTCH ligand 1 (Dlk1), has previously been shown to mediate fibrosis in the skin, lung and liver, but very little is known on its effect in the heart. METHODS: Herein, human pericardial fluid/plasma and tissue biopsies were assessed for DLK1, whereas the spatiotemporal expression of Dlk1 was determined in mouse hearts. The Dlk1 heart phenotype in normal and MI hearts was assessed in transgenic mice either lacking or overexpressing Dlk1. Finally, in/ex vivo cell studies provided knowledge on the molecular mechanism. RESULTS: Dlk1 was demonstrated in non-myocytes of the developing human myocardium but exhibited a restricted pericardial expression in adulthood. Soluble DLK1 was twofold higher in pericardial fluid (median 45.7 [34.7 (IQR)) µg/L] from cardiovascular patients (n = 127) than in plasma (median 26.1 µg/L [11.1 (IQR)]. The spatial and temporal expression pattern of Dlk1 was recapitulated in mouse and rat hearts. Similar to humans lacking Dlk1, adult Dlk1-/- mice exhibited a relatively mild developmental, although consistent cardiac phenotype with some abnormalities in heart size, shape, thorax orientation and non-myocyte number, but were functionally normal. However, after MI, scar size was substantially reduced in Dlk1-/- hearts as compared with Dlk1+/+ littermates. In line, high levels of Dlk1 in transgenic mice Dlk1fl/fl xWT1GFPCre and Dlk1fl/fl xαMHCCre/+Tam increased scar size following MI. Further mechanistic and cellular insight demonstrated that pericardial Dlk1 mediates cardiac fibrosis through epithelial to mesenchymal transition (EMT) of the EPDC lineage by maintaining Integrin ß8 (Itgb8), a major activator of transforming growth factor ß and EMT. CONCLUSIONS: Our results suggest that pericardial Dlk1 embraces a, so far, unnoticed role in the heart augmenting cardiac fibrosis through EMT. Monitoring DLK1 levels as well as targeting pericardial DLK1 may thus offer new venues for cardio-protection.


Assuntos
Transição Epitelial-Mesenquimal , Infarto do Miocárdio , Adulto , Animais , Humanos , Camundongos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cicatriz/metabolismo , Cicatriz/patologia , Transição Epitelial-Mesenquimal/genética , Fibrose , Ligantes , Camundongos Transgênicos , Infarto do Miocárdio/genética , Pericárdio/metabolismo , Tórax/patologia
4.
Cancer Sci ; 115(3): 723-733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263895

RESUMO

RNA modifications, including the renowned m6A, have recently garnered significant attention. This chemical alteration, present in mRNA, exerts a profound influence on protein expression levels by affecting splicing, nuclear export, stability, translation, and other critical processes. Although the role of RNA methylation in the pathogenesis and progression of IBD and colorectal cancer has been reported, many aspects remain unresolved. In this comprehensive review, we present recent studies on RNA methylation in IBD and colorectal cancer, with a particular focus on m6A and its regulators. We highlight the pivotal role of m6A in the pathogenesis of IBD and colorectal cancer and explore the potential applications of m6A modifications in the diagnosis and treatment of these diseases.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Humanos , 60697 , Doenças Inflamatórias Intestinais/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Neoplasias Colorretais/genética , RNA
5.
Cancer Sci ; 115(1): 211-226, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972575

RESUMO

The tumor microenvironment (TME) consists of cancer cells surrounded by stromal components including tumor vessels. Transforming growth factor-ß (TGF-ß) promotes tumor progression by inducing epithelial-mesenchymal transition (EMT) in cancer cells and stimulating tumor angiogenesis in the tumor stroma. We previously developed an Fc chimeric TGF-ß receptor containing both TGF-ß type I (TßRI) and type II (TßRII) receptors (TßRI-TßRII-Fc), which trapped all TGF-ß isoforms and suppressed tumor growth. However, the precise mechanisms underlying this action have not yet been elucidated. In the present study, we showed that the recombinant TßRI-TßRII-Fc protein effectively suppressed in vitro EMT of oral cancer cells and in vivo tumor growth in a human oral cancer cell xenograft mouse model. Tumor cell proliferation and angiogenesis were suppressed in tumors treated with TßRI-TßRII-Fc. Molecular profiling of human cancer cells and mouse stroma revealed that K-Ras signaling and angiogenesis were suppressed. Administration of TßRI-TßRII-Fc protein decreased the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), interleukin-1ß (IL-1ß) and epiregulin (EREG) in the TME of oral cancer tumor xenografts. HB-EGF increased proliferation of human oral cancer cells and mouse endothelial cells by activating ERK1/2 phosphorylation. HB-EGF also promoted oral cancer cell-derived tumor formation by enhancing cancer cell proliferation and tumor angiogenesis. In addition, increased expressions of IL-1ß and EREG in oral cancer cells significantly enhanced tumor formation. These results suggest that TGF-ß signaling in the TME controls cancer cell proliferation and angiogenesis by activating HB-EGF/IL-1ß/EREG pathways and that TßRI-TßRII-Fc protein is a promising tool for targeting the TME networks.


Assuntos
Neoplasias Bucais , Proteínas Serina-Treonina Quinases , Humanos , Camundongos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Células Endoteliais/metabolismo , Microambiente Tumoral , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta1 , Neoplasias Bucais/genética , Fatores de Crescimento Transformadores
8.
Brief Funct Genomics ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37791426

RESUMO

The cases of inflammatory bowel disease (IBD) are increasing rapidly around the world. Due to the multifactorial causes of IBD, there is an urgent need to understand the pathogenesis of IBD. As such, the usage of high-throughput techniques to profile genetic mutations, microbiome environments, transcriptome and proteome (e.g. lipidome) is increasing to understand the molecular changes associated with IBD, including two major etiologies of IBD: Crohn disease (CD) and ulcerative colitis (UC). In the case of transcriptome data, RNA sequencing (RNA-seq) technique is used frequently. However, only protein-coding genes are analyzed, leaving behind all other RNAs, including non-coding RNAs (ncRNAs) to be unexplored. Among these ncRNAs, long non-coding RNAs (lncRNAs) may hold keys to understand the pathogenesis of IBD as lncRNAs are expressed in a cell/tissue-specific manner and dysregulated in a disease, such as IBD. However, it is rare that RNA-seq data are analyzed for lncRNAs. To fill this gap in knowledge, we re-analyzed RNA-seq data of CD and UC patients compared with the healthy donors to dissect the expression profiles of lncRNA genes. As inflammation plays key roles in the pathogenesis of IBD, we conducted loss-of-function experiments to provide functional data of IBD-specific lncRNA, lung cancer associated transcript 1 (LUCAT1), in an in vitro model of macrophage polarization. To further facilitate the lncRNA research in IBD, we built a web database, IBDB (https://ibd-db.shinyapps.io/IBDB/), to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in IBD patients compared with healthy donors.

9.
Trends Mol Med ; 29(12): 983-995, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806854

RESUMO

Multiomics studies offer accurate preventive and therapeutic strategies for atherosclerotic cardiovascular disease (ASCVD) beyond traditional risk factors. By using artificial intelligence (AI) and machine learning (ML) approaches, it is possible to integrate multiple 'omics and clinical data sets into tools that can be utilized for the development of personalized diagnostic and therapeutic approaches. However, currently multiple challenges in data quality, integration, and privacy still need to be addressed. In this opinion, we emphasize that joined efforts, exemplified by the AtheroNET COST Action, have a pivotal role in overcoming the challenges to advance multiomics approaches in ASCVD research, with the aim to foster more precise and effective patient care.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Inteligência Artificial , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Multiômica , Aterosclerose/diagnóstico , Aterosclerose/genética , Aterosclerose/terapia , Aprendizado de Máquina
10.
Noncoding RNA ; 9(5)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37736896

RESUMO

The NLRP3 inflammasome plays a pivotal role in regulating inflammation and immune responses. Its activation can lead to an inflammatory response and pyroptotic cell death. This is beneficial in the case of infections, but excessive activation can lead to chronic inflammation and tissue damage. Moreover, while most of the mammalian genome is transcribed as RNAs, only a small fraction codes for proteins. Among non-protein-coding RNAs, long non-coding RNAs (lncRNAs) have been shown to play key roles in regulating gene expression and cellular processes. They interact with DNA, RNAs, and proteins, and their dysregulation can provide insights into disease mechanisms, including NLRP3 inflammasome activation. Here, we systematically analyzed previously published RNA sequencing (RNA-seq) data of NLRP3 inflammasome activation in monocytes/macrophages to uncover inflammasome-regulated lncRNA genes. To uncover the functional importance of inflammasome-regulated lncRNA genes, one inflammasome-regulated lncRNA, ENSG00000273124, was knocked down in an in vitro model of macrophage polarization. The results indicate that silencing of ENSG00000273124 resulted in the up-regulation tumor necrosis factor (TNF), suggesting that this lncRNA might be involved in pro-inflammatory response in macrophages. To make our analyzed data more accessible, we developed the web database InflammasomeDB.

11.
BioTech (Basel) ; 12(3)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37754200

RESUMO

RNA, like DNA and proteins, can undergo modifications. To date, over 170 RNA modifications have been identified, leading to the emergence of a new research area known as epitranscriptomics. RNA editing is the most frequent RNA modification in mammalian transcriptomes, and two types have been identified: (1) the most frequent, adenosine to inosine (A-to-I); and (2) the less frequent, cysteine to uracil (C-to-U) RNA editing. Unlike other epitranscriptomic marks, RNA editing can be readily detected from RNA sequencing (RNA-seq) data without any chemical conversions of RNA before sequencing library preparation. Furthermore, analyzing RNA editing patterns from transcriptomic data provides an additional layer of information about the epitranscriptome. As the significance of epitranscriptomics, particularly RNA editing, gains recognition in various fields of biology and medicine, there is a growing interest in detecting RNA editing sites (RES) by analyzing RNA-seq data. To cope with this increased interest, several bioinformatic tools are available. However, each tool has its advantages and disadvantages, which makes the choice of the most appropriate tool for bench scientists and clinicians difficult. Here, we have benchmarked bioinformatic tools to detect RES from RNA-seq data. We provide a comprehensive view of each tool and its performance using previously published RNA-seq data to suggest recommendations on the most appropriate for utilization in future studies.

12.
Noncoding RNA ; 9(4)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37624038

RESUMO

Breakthroughs in innovative techniques and instruments have driven the exploration of non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) [...].

13.
Stem Cell Rev Rep ; 19(7): 2429-2446, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500831

RESUMO

BACKGROUND: Although cell therapy provides benefits for outcomes of heart failure, the most optimal cell type to be used clinically remains unknown. Most of the cell products used for therapy in humans require in vitro expansion to obtain a suitable number of cells for treatment; however, the clinical background of the donor and limited starting material may result in the impaired proliferative and reparative capacity of the cells expanded in vitro. Wharton's jelly mesenchymal cells (WJ MSCs) provide a multitude of advantages over adult tissue-derived cell products for therapy. These include large starting tissue material, superior proliferative capacity, and disease-free donors. Thus, WJ MSC if effective would be the most optimal cell source for clinical use. OBJECTIVES: This study evaluated the therapeutic efficacy of Wharton's jelly (WJ) and bone marrow (BM) mesenchymal stromal cells (MSCs) in chronic ischemic cardiomyopathy in rats. METHODS: Human WJ MSCs and BM MSCs were expanded in vitro, characterized, and evaluated for therapeutic efficacy in a immunodeficient rat model of ischemic cardiomyopathy. Cardiac function was evaluated with hemodynamics and echocardiography. The extent of cardiac fibrosis, hypertrophy, and inflammation was assessed with histological analysis. RESULTS: In vitro analysis revealed that WJ MSCs and BM MSCs are morphologically and immunophenotypically indistinguishable. Nevertheless, the functional analysis showed that WJ MSCs have a superior proliferative capacity, less senescent phenotype, and distinct transcriptomic profile compared to BM MSC. WJ MSCs and BM MSC injected in rat hearts chronically after MI produced a small, but not significant improvement in heart structure and function. Histological analysis showed no difference in the scar size, collagen content, cardiomyocyte cross-sectional area, and immune cell count. CONCLUSIONS: Human WJ and BM MSC have a small but not significant effect on cardiac structure and function when injected intramyocardially in immunodeficient rats chronically after MI.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Isquemia Miocárdica , Geleia de Wharton , Adulto , Ratos , Humanos , Animais , Medula Óssea , Isquemia Miocárdica/terapia , Infarto do Miocárdio/metabolismo
14.
Noncoding RNA ; 9(4)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37489459

RESUMO

Cancer and cardiovascular disease are the leading causes of death worldwide. Recent evidence suggests that these two life-threatening diseases share several features in disease progression, such as angiogenesis, fibrosis, and immune responses. This has led to the emergence of a new field called cardio-oncology. Doxorubicin is a chemotherapy drug widely used to treat cancer, such as bladder and breast cancer. However, this drug causes serious side effects, including acute ventricular dysfunction, cardiomyopathy, and heart failure. Based on this evidence, we hypothesize that comparing the expression profiles of cells and tissues treated with doxorubicin may yield new insights into the adverse effects of the drug on cellular activities. To test this hypothesis, we analyzed published RNA sequencing (RNA-seq) data from doxorubicin-treated cells to identify commonly differentially expressed genes, including long non-coding RNAs (lncRNAs) as they are known to be dysregulated in diseased tissues and cells. From our systematic analysis, we identified several doxorubicin-induced genes. To confirm these findings, we treated human cardiac fibroblasts with doxorubicin to record expression changes in the selected doxorubicin-induced genes and performed a loss-of-function experiment of the lncRNA MAP3K4-AS1. To further disseminate the analyzed data, we built the web database DoxoDB.

15.
Noncoding RNA ; 9(3)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37218990

RESUMO

Type II diabetes (T2D) is a growing health problem worldwide due to increased levels of obesity and can lead to other life-threatening diseases, such as cardiovascular and kidney diseases. As the number of individuals diagnosed with T2D rises, there is an urgent need to understand the pathogenesis of the disease in order to prevent further harm to the body caused by elevated blood glucose levels. Recent advances in long non-coding RNA (lncRNA) research may provide insights into the pathogenesis of T2D. Although lncRNAs can be readily detected in RNA sequencing (RNA-seq) data, most published datasets of T2D patients compared to healthy donors focus only on protein-coding genes, leaving lncRNAs to be undiscovered and understudied. To address this knowledge gap, we performed a secondary analysis of published RNA-seq data of T2D patients and of patients with related health complications to systematically analyze the expression changes of lncRNA genes in relation to the protein-coding genes. Since immune cells play important roles in T2D, we conducted loss-of-function experiments to provide functional data on the T2D-related lncRNA USP30-AS1, using an in vitro model of pro-inflammatory macrophage activation. To facilitate lncRNA research in T2D, we developed a web application, T2DB, to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in T2D patients compared to healthy donors or subjects without T2D.

18.
Am J Physiol Cell Physiol ; 324(4): C837-C842, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36847441

RESUMO

Adenosine to inosine (A-to-I) RNA editing is one of the most frequent RNA modifications found in the mammalian transcriptome. Recent studies clearly indicate that RNA editing enzymes, adenosine deaminase acting on RNAs (ADARs), are upregulated in stressed cells and under disease conditions, suggesting that monitoring RNA editing patterns might be useful as diagnostic biomarkers of various diseases. Here, we provide an overview of epitranscriptomics, and focus particularly on the detection and analysis of A-to-I RNA editing using bioinformatic tools in RNA-seq data sets, as well as briefly reviewing the existing evidence about its involvement in disease progressions. Finally, we argue for the detection of RNA editing patterns as part of the routine analysis in RNA-based data sets, with the aim of accelerating the identification of RNA editing targets linked to disease.


Assuntos
Edição de RNA , RNA , Animais , Edição de RNA/genética , Transcriptoma/genética , Biomarcadores , Mamíferos
19.
Genes (Basel) ; 14(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672953

RESUMO

Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Hipertensão , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Diabetes Mellitus/genética , Obesidade/genética , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...